Sunday 26 November 2017

Vorteile Und Begrenzungen Of The Moving Average Methode Of Trend Passend


Schritte bei der Auswahl eines Prognosemodells Ihr Prognosemodell sollte Merkmale beinhalten, die alle wichtigen qualitativen Eigenschaften der Daten erfassen: Muster der Variation in Level und Trend, Auswirkungen von Inflation und Saisonalität, Korrelationen zwischen Variablen usw. Darüber hinaus sind die Annahmen, die Ihrem zugrunde liegen Gewähltes Modell sollte mit Ihrer Intuition übereinstimmen, wie sich die Serie wahrscheinlich in der Zukunft verhalten wird. Bei der Anpassung eines Prognosemodells haben Sie einige der folgenden Optionen: Diese Optionen werden im Folgenden kurz beschrieben. Weitere Informationen finden Sie im dazugehörigen Prognose-Ablaufdiagramm für eine bildliche Darstellung des Modellspezifikationsprozesses und verweisen auf das Statgraphics Model Specification Panel, um zu sehen, wie die Modellmerkmale in der Software ausgewählt werden. Deflation Wenn die Serie das Inflationswachstum zeigt, dann wird die Deflation dazu beitragen, das Wachstumsmuster zu berücksichtigen und die Heterosedastizität in den Resten zu reduzieren. Sie können entweder (i) die vergangenen Daten entleeren und die langfristigen Prognosen mit einer konstanten angenommenen Rate neu anlegen oder (ii) die vergangenen Daten durch einen Preisindex wie den CPI deflationieren und dann die langfristigen Prognosen quellenfristig neu erstellen Eine Prognose des Preisindexes. Option (i) ist am einfachsten. In Excel können Sie einfach eine Spalte von Formeln erstellen, um die ursprünglichen Werte durch die entsprechenden Faktoren zu teilen. Zum Beispiel, wenn die Daten monatlich sind und Sie mit einer Rate von 5 pro 12 Monate deflationieren möchten, würden Sie durch einen Faktor von (1.05) (k12) teilen, wobei k der Zeilenindex (Beobachtungsnummer) ist. RegressIt und Statgraphics haben integrierte Tools, die dies automatisch für Sie tun. Wenn Sie diese Route gehen, ist es in der Regel am besten, die angenommene Inflationsrate gleich Ihrer besten Schätzung der aktuellen Rate, vor allem, wenn Sie gehen zu prognostizieren mehr als eine Periode vor. Wenn Sie stattdessen Option (ii) wählen, müssen Sie zuerst die deflationierten Prognosen und Vertrauensgrenzen auf Ihre Datenkalkulationstabelle speichern, dann eine Prognose für den Preisindex erzeugen und speichern und schließlich die entsprechenden Spalten zusammen multiplizieren. (Rückkehr nach oben) Logarithmus-Transformation Wenn die Reihe das zusammengesetzte Wachstum und ein multiplikatives saisonales Muster zeigt, kann eine Logarithmus-Transformation zusätzlich zu oder lieu der Deflation hilfreich sein. Die Protokollierung der Daten wird ein inflationäres Wachstumsmuster nicht verkleinern, aber es wird es so ausrichten, dass es durch ein lineares Modell (z. B. ein zufälliges Spaziergang oder ARIMA-Modell mit konstantem Wachstum oder ein lineares exponentielles Glättungsmodell) angepasst werden kann. Auch das Protokollieren wird multiplikative saisonale Muster zu additiven Mustern umwandeln, so dass, wenn Sie saisonale Anpassung nach dem Protokollieren durchführen, sollten Sie den additiven Typ verwenden. Die Protokollierung befasst sich mit der Inflation implizit, wenn Sie wollen, dass die Inflation explizit modelliert wird - d. h. Wenn Sie möchten, dass die Inflationsrate ein sichtbarer Parameter des Modells ist oder wenn Sie Plots von deflationierten Daten anzeigen möchten, dann sollten Sie sich entleeren, anstatt sich zu loggen. Eine weitere wichtige Verwendung für die Log-Transformation ist die Linearisierung von Beziehungen zwischen Variablen in einem Regressionsmodus l. Wenn zum Beispiel die abhängige Variable eine multiplikative und nicht additive Funktion der unabhängigen Variablen ist oder wenn die Beziehung zwischen abhängigen und unabhängigen Variablen in Form von prozentualen Änderungen anstelle von absoluten Änderungen linear ist, dann eine Log-Transformation auf eine oder mehrere Variablen anwenden Kann geeignet sein, wie im Beispiel des Bierverkaufs. (Zurück zum Seitenanfang.) Saisonale Anpassung Wenn die Serie ein starkes Saisonmuster hat, von dem angenommen wird, dass sie von Jahr zu Jahr konstant ist, kann die saisonale Anpassung ein geeigneter Weg sein, um das Muster zu schätzen und zu extrapolieren. Der Vorteil der saisonalen Anpassung ist, dass es das saisonale Muster explizit modelliert und Ihnen die Möglichkeit gibt, die saisonalen Indizes und die saisonbereinigten Daten zu studieren. Der Nachteil ist, dass es die Schätzung einer großen Anzahl von zusätzlichen Parametern erfordert (insbesondere für monatliche Daten), und es stellt keine theoretische Begründung für die Berechnung von fehlerhaften Konfidenzintervallen zur Verfügung. Out-of-Sample-Validierung ist besonders wichtig, um das Risiko der Überlagerung der vergangenen Daten durch saisonale Anpassung zu reduzieren. Wenn die Daten stark saisonal sind, aber Sie nicht wählen saisonale Anpassung, die Alternativen sind entweder (i) verwenden Sie eine saisonale ARIMA-Modell. Die implizit das saisonale Muster mit saisonalen Verzögerungen und Unterschieden prognostiziert, oder (ii) das Winters saisonale exponentielle Glättungsmodell verwenden, das zeitveränderliche saisonale Indizes schätzt. (Zurück zum Seitenanfang.) QuotIndependentquot Variablen Wenn es noch andere Zeitreihen gibt, von denen man glaubt, dass sie in Bezug auf Ihre interessante Serie (zB führende Wirtschaftsindikatoren oder politische Variablen wie Preis, Werbung, Promotionen etc.) Möchte die Regression als Modelltyp betrachten. Ob Sie Regression wählen oder nicht, müssen Sie die oben genannten Möglichkeiten für die Umwandlung Ihrer Variablen (Deflation, Log, saisonale Anpassung - und vielleicht auch differenzierende) berücksichtigen, um die Zeitdimension zu nutzen und die Beziehungen zu linearisieren. Auch wenn Sie an dieser Stelle keine Regression wählen, können Sie erwähnen, Regressoren später zu einem Zeitreihenmodell (z. B. einem ARIMA-Modell) hinzuzufügen, wenn die Residuen sich mit anderen Variablen signifikanten Kreuzkorrelationen ergeben. (Zurück zum Seitenanfang) Glättung, Mittelung oder zufälliger Spaziergang Wenn Sie sich für die saisonale Anpassung der Daten entschieden haben - oder wenn die Daten nicht saisonal beginnen, dann können Sie vielleicht ein Mittelwert oder ein Glättungsmodell verwenden Passt das nicht-seasonal Muster, das in den Daten an dieser Stelle bleibt. Ein einfaches gleitendes durchschnittliches oder einfaches exponentielles Glättungsmodell berechnet lediglich einen lokalen Durchschnitt von Daten am Ende der Reihe, unter der Annahme, dass dies die beste Schätzung des aktuellen Mittelwerts ist, um den die Daten schwanken. (Diese Modelle gehen davon aus, dass der Mittelwert der Serie langsam und zufällig ohne anhaltende Trends variiert.) Eine einfache exponentielle Glättung wird normalerweise einem einfachen gleitenden Durchschnitt bevorzugt, weil ihr exponentiell gewichteter Durchschnitt eine sinnvollere Aufgabe hat, die älteren Daten zu diskontieren, weil seine Glättungsparameter (alpha) ist kontinuierlich und lässt sich leicht optimieren und weil es eine zugrundeliegende theoretische Grundlage für die Berechnung von Konfidenzintervallen hat. Wenn Glättung oder Mittelung nicht hilfreich zu sein scheint - d. h. Wenn der beste Prädiktor des nächsten Wertes der Zeitreihe einfach seinen vorherigen Wert ist - dann wird ein zufälliges Wandermodell angezeigt. Dies ist beispielsweise dann der Fall, wenn die optimale Anzahl von Terme im einfachen gleitenden Durchschnitt 1 ist oder wenn der optimale Wert von alpha in einfacher exponentieller Glättung 0,9999 beträgt. Browns lineare exponentielle Glättung kann verwendet werden, um eine Serie mit langsam zeitveränderlichen linearen Trends passen, aber vorsichtig sein, um solche Trends sehr weit in die Zukunft zu extrapolieren. (Die sich schnell wachsenden Konfidenzintervalle für dieses Modell belegen seine Ungewissheit über die ferne Zukunft.) Holts lineare Glättung schätzt auch zeitveränderliche Trends, verwendet aber separate Parameter für die Glättung von Level und Trend, was in der Regel eine bessere Anpassung an die Daten liefert Als Brown8217s Modell. Q uadratische exponentielle Glättung versucht, zeitvariable quadratische Trends abzuschätzen und sollte praktisch niemals verwendet werden. (Dies entspricht einem ARIMA-Modell mit drei Ordnungen von Nichtseason-Differenzen.) Lineare exponentielle Glättung mit einem gedämpften Trend (d. h. ein Trend, der sich in entfernten Horizonten abflacht) wird oft in Situationen empfohlen, in denen die Zukunft sehr unsicher ist. Die verschiedenen exponentiellen Glättungsmodelle sind Sonderfälle von ARIMA Modellen (siehe unten) und können mit ARIMA Software ausgestattet werden. Insbesondere ist das einfache exponentielle Glättungsmodell ein ARIMA (0,1,1) Modell, das Holt8217s lineare Glättungsmodell ist ein ARIMA (0,2,2) Modell und das gedämpfte Trendmodell ist ein ARIMA (1,1,2 ) Modell. Eine gute Zusammenfassung der Gleichungen der verschiedenen exponentiellen Glättungsmodelle finden Sie auf dieser Seite auf der SAS-Website. (Die SAS-Menüs für die Spezifizierung von Zeitreihenmodellen werden auch dort gezeigt, wie sie in den Statgraphiken ähnlich sind.) Lineare, quadratische oder exponentielle Trendlinienmodelle sind weitere Optionen für die Extrapolation einer entsetzten Serie, aber sie übertreffen selten zufällige Spaziergänge, Glättung oder ARIMA-Modelle auf Geschäftsdaten. (Zurück zum Seitenanfang) Winters Seasonal Exponential Smoothing Winters Saisonale Glättung ist eine Erweiterung der exponentiellen Glättung, die gleichzeitig zeitveränderliche Level-, Trend - und saisonale Faktoren mit rekursiven Gleichungen schätzt. (So, wenn du dieses Modell benutzt, würdest du die Daten nicht saisonal anpassen.) Die Wintersaisonfaktoren können entweder multiplikativ oder additiv sein: Normalerweise sollten Sie die multiplikative Option wählen, wenn Sie die Daten nicht angemeldet haben. Obwohl das Winters-Modell clever und vernünftig intuitiv ist, kann es schwierig sein, in der Praxis anzuwenden: Es hat drei Glättungsparameter - Alpha, Beta und Gamma - für die getrennte Glättung der Level-, Trend - und Saisonfaktoren, die geschätzt werden müssen gleichzeitig. Die Bestimmung der Startwerte für die saisonalen Indizes kann durch Anwendung der Verhältnis-zu-Verschiebung durchschnittlichen Methode der saisonalen Anpassung an Teil oder alle der Serie und oder durch Backforecasting erfolgen. Der Schätzalgorithmus, den Statgraphics für diese Parameter verwendet, scheitert manchmal nicht und liefert Werte, die bizarr aussehende Prognosen und Konfidenzintervalle geben, also würde ich bei der Verwendung dieses Modells Vorsicht walten lassen. (Zurück zum Seitenanfang.) ARIMA Wenn Sie keine saisonale Anpassung wählen (oder wenn die Daten nicht saisonal sind), können Sie das ARIMA-Modell-Framework verwenden. ARIMA-Modelle sind eine sehr allgemeine Klasse von Modellen, die zufälligen Spaziergang, zufälligen Trend, exponentielle Glättung und autoregressive Modelle als spezielle Fälle beinhaltet. Die konventionelle Weisheit ist, dass eine Serie ein guter Kandidat für ein ARIMA-Modell ist, wenn (i) es durch eine Kombination von differenzierenden und anderen mathematischen Transformationen wie Protokollierung stationiert werden kann, und (ii) Sie haben eine beträchtliche Menge an Daten zu arbeiten : Mindestens 4 volle Jahreszeiten bei saisonalen Daten. (Wenn die Serie durch Differenzierung nicht adäquat stationärisiert werden kann - zB wenn es sehr unregelmäßig ist oder ihr Verhalten im Laufe der Zeit qualitativ verändert hat - oder wenn Sie weniger als 4 Datenperioden haben, dann wäre es besser, mit einem Modell besser zu sein Das saisonale Anpassung und eine Art einfache Mittelung oder Glättung verwendet.) ARIMA Modelle haben eine spezielle Namenskonvention von Box und Jenkins eingeführt. Ein nicht-seasonales ARIMA-Modell wird als ARIMA (p, d, q) - Modell klassifiziert, wobei d die Anzahl der nicht-seasonalen Differenzen ist, p die Anzahl der autoregressiven Terme (Verzögerungen der differenzierten Reihe) und q die Anzahl der Moving - Durchschnittliche Ausdrücke (Verzögerungen der Prognosefehler) in der Vorhersagegleichung. Ein saisonales ARIMA-Modell wird als ARIMA (p, d, q) x (P, D, Q) klassifiziert. Wobei D, P und Q jeweils die Anzahl der saisonalen Unterschiede, saisonale autoregressive Begriffe (Verzögerungen der differenzierten Reihen bei Vielfachen der Saisonperiode) und saisonale gleitende Durchschnittsterme (Verzögerungen der Prognosefehler bei Vielfachen der Saison Periode). Der erste Schritt in der Anpassung eines ARIMA-Modells ist es, die richtige Reihenfolge der Differenzierung zu bestimmen, die benötigt wird, um die Serie zu stationieren und die Brutto-Features der Saisonalität zu entfernen. Dies ist gleichbedeutend mit der Bestimmung, welche Quoten-Zufalls-Spaziergang oder Zufalls-Trend-Modell den besten Ausgangspunkt bietet. Versuchen Sie nicht, mehr als 2 Gesamtaufträge von differencing (nicht saisonale und saisonale kombiniert) zu verwenden, und verwenden Sie nicht mehr als einen saisonalen Unterschied. Der zweite Schritt ist zu bestimmen, ob ein konstanter Begriff in das Modell gehören: in der Regel haben Sie einen konstanten Begriff, wenn die gesamte Reihenfolge der Differenzierung ist 1 oder weniger, sonst sind Sie nicht. In einem Modell mit einer Reihenfolge der Differenzierung stellt der konstante Begriff den durchschnittlichen Trend in den Prognosen dar. In einem Modell mit zwei Ordnungen der Differenzierung wird der Trend in den Prognosen durch den am Ende der Zeitreihe beobachteten lokalen Trend bestimmt und der konstante Term repräsentiert den Trend-in-the-Trend, dh die Krümmung der Langzeit - Langfristige prognosen Normalerweise ist es gefährlich, Trends-in-Trends zu extrapolieren, also unterdrücken Sie den dazugehörigen Begriff in diesem Fall. Der dritte Schritt besteht darin, die Anzahl der autoregressiven und gleitenden Durchschnittsparameter (p, d, q, P, D, Q) zu wählen, die benötigt werden, um jegliche Autokorrelation zu beseitigen, die in den Resten des naiven Modells verbleibt (dh jegliche Korrelation, Bloß differenzierend). Diese Zahlen bestimmen die Anzahl der Verzögerungen der differenzierten Serien und die Verzögerungen der Prognosefehler, die in der Prognosegleichung enthalten sind. Wenn es an dieser Stelle keine signifikante Autokorrelation in den Residuen gibt, dann ist das getan: das beste Modell ist ein naives Modell Wenn es eine signifikante Autokorrelation bei den Verzögerungen 1 oder 2 gibt, sollten Sie versuchen, q1 einzustellen, wenn einer der folgenden Punkte zutrifft: ( I) Es gibt einen nicht-saisonalen Unterschied im Modell, (ii) die Verzögerung 1 Autokorrelation ist negativ. Und (iii) die restliche Autokorrelationskurve ist sauberer (weniger, mehr isolierte Spikes) als die restliche partielle Autokorrelationskurve. Wenn es keinen nicht-saisonalen Unterschied in der Modell-und und die Lag 1 Autokorrelation ist positiv und und die restlichen partiellen Autokorrelation Handlung sieht sauberer, dann versuchen p1. (Manchmal sind diese Regeln für die Wahl zwischen p1 und q1 in Konflikt mit einander, in welchem ​​Fall es wahrscheinlich nicht viel Unterschied, die Sie verwenden. Versuchen Sie sie beide und vergleichen.) Wenn es Autokorrelation bei Verzögerung 2, die nicht durch die Einstellung p1 entfernt wird Oder q1, dann kannst du p2 oder q2 oder gelegentlich p1 und q1 ausprobieren. Noch seltener kann man Situationen begegnen, in denen p2 oder 3 und q1 oder umgekehrt die besten Ergebnisse liefert. Es wird sehr dringend empfohlen, dass Sie pgt1 und qgt1 nicht im selben Modell verwenden. Im Allgemeinen sollten Sie bei der Montage von ARIMA-Modellen eine zunehmende Modellkomplexität vermeiden, um nur winzige weitere Verbesserungen der Fehlerstatistiken oder das Aussehen der ACF - und PACF-Plots zu erhalten. Auch in einem Modell mit pgt1 und qgt1 gibt es eine gute Möglichkeit der Redundanz und Nicht-Eindeutigkeit zwischen den AR - und MA-Seiten des Modells, wie in den Anmerkungen zur mathematischen Struktur des ARIMA-Modells s erläutert. Es ist in der Regel besser, in einer vorwärts schrittweise statt rückwärts schrittweise Weise vorzugehen, wenn man die Modellspezifikationen anpasst: Mit einfacheren Modellen beginnen und nur noch mehr Begriffe hinzufügen, wenn es einen klaren Bedarf gibt. Die gleiche Regelung gilt für die Anzahl der saisonalen autoregressiven Begriffe (P) und die Anzahl der saisonalen gleitenden Durchschnittstermine (Q) in Bezug auf die Autokorrelation zum Saisonzeitraum (z. B. Verzögerung 12 für monatliche Daten). Versuchen Sie Q1, wenn es bereits einen saisonalen Unterschied im Modell gibt und die saisonale Autokorrelation negativ ist und die restliche Autokorrelationskurve in der Nähe der Saisonverzögerung sauberer aussieht, sonst versuchen Sie P1. (Wenn es logisch ist, dass die Serie eine starke Saisonalität aufweist, dann müssen Sie einen saisonalen Unterschied verwenden, sonst wird das saisonale Muster bei Langzeitprognosen ausblenden.) Gelegentlich können Sie P2 und Q0 oder Vice v ersa ausprobieren, Oder PQ1. Allerdings ist es sehr dringend empfohlen, dass PQ nie größer sein sollte als 2. Saisonmuster haben selten die Art von perfekter Regelmäßigkeit über eine ausreichend große Anzahl von Jahreszeiten, die es ermöglichen würde, zuverlässig zu identifizieren und zu schätzen, dass viele Parameter. Außerdem wird der Backforecasting-Algorithmus, der bei der Parameterschätzung verwendet wird, wahrscheinlich zu unzuverlässigen (oder sogar verrückten) Ergebnissen führen, wenn die Anzahl der Jahreszeiten von Daten nicht signifikant größer als PDQ ist. Ich würde nicht weniger als PDQ2 volle Jahreszeiten empfehlen, und mehr ist besser. Auch bei der Montage von ARIMA-Modellen sollten Sie darauf achten, dass die Daten nicht übertrieben werden, trotz der Tatsache, dass es eine Menge Spaß sein kann, sobald Sie den Hang davon bekommen. Wichtige Sonderfälle: Wie oben erwähnt, ist ein ARIMA (0,1,1) - Modell ohne Konstante identisch mit einem einfachen exponentiellen Glättungsmodell und nimmt einen Floating-Level an (d. h. keine mittlere Reversion), aber mit null langfristigem Trend. Ein ARIMA (0,1,1) Modell mit Konstante ist ein einfaches exponentielles Glättungsmodell mit einem linearen Trendbegriff. Ein ARIMA (0,2,1) oder (0,2,2) Modell ohne Konstante ist ein lineares exponentielles Glättungsmodell, das einen zeitveränderlichen Trend ermöglicht. Ein ARIMA (1,1,2) - Modell ohne Konstante ist ein lineares exponentielles Glättungsmodell mit gedämpftem Trend, d. h. ein Trend, der sich schließlich in längerfristigen Prognosen abhebt. Die gebräuchlichsten saisonalen ARIMA Modelle sind das ARIMA (0,1,1) x (0,1,1) Modell ohne Konstante und das ARIMA (1,0,1) x (0,1,1) Modell mit konstantem. Die ersteren dieser Modelle setzen grundsätzlich eine exponentielle Glättung sowohl der nicht-seasonalen als auch der saisonalen Komponenten des Musters in den Daten ein, während sie einen zeitveränderlichen Trend zulassen, und das letztere Modell ist etwas ähnlich, nimmt aber einen konstanten linearen Trend an und ist daher etwas langer - term Vorhersagbarkeit. Sie sollten immer diese beiden Modelle unter Ihrer Aufstellung von Verdächtigen, wenn passende Daten mit konsistenten saisonalen Muster. Einer von ihnen (vielleicht mit einer geringfügigen Variation, wie z. B. steigende p oder q um 1 undeiner Einstellung P1 sowie Q1) ist oft die beste. (Zurück zum Seitenanfang) Vorhersage durch Glättung Techniken Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Anwendungsbereichen im MENU-Bereich auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die rechtzeitig bestellt werden. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken zeigen, wenn sie richtig angewendet werden, deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge ein, beginnend von der linken oberen Ecke und den Parameter (s), und klicken Sie dann auf die Schaltfläche Berechnen, um eine Vorhersage zu erhalten. Blank Boxen sind nicht in den Berechnungen enthalten, aber Nullen sind. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Datenmatrix zu wechseln, benutzen Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Prüfung ihres Graphen aufgedeckt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Bedingungsprognosemodellierung. Moving Averages: Moving Averages gehören zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentielle Glättung: Dies ist ein sehr beliebtes Schema, um eine geglättete Zeitreihe zu produzieren. Während bei fortlaufenden Mitteln die bisherigen Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen werden bei der Prognose relativ viel mehr gegeben als die älteren Beobachtungen. Double Exponential Glättung ist besser bei der Handhabung von Trends. Triple Exponential Glättung ist besser bei der Behandlung von Parabel Trends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante a. Entspricht etwa einem einfachen gleitenden Mittelwert der Länge (d. H. Periode) n, wobei a und n verwandt sind durch: a 2 (n1) OR n (2 - a) a. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19-tägigen gleitenden Durchschnitt entsprechen. Und ein 40-Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt entsprechen, wobei eine Glättungskonstante gleich 0,04878 ist. Holts Linear Exponential Glättung: Angenommen, die Zeitreihe ist nicht saisonal, aber zeigt Trend. Holts-Methode schätzt sowohl den aktuellen Level als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein besonderer Fall der exponentiellen Glättung ist, indem die Periode des gleitenden Durchschnitts auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft wirksam. Jedoch kann man eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten Mean Absolute Error (MA Error). Wie man mehrere Glättungsmethoden vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognose-Technik gibt, ist der am weitesten verbreitete Ansatz bei der Verwendung visueller Vergleich von mehreren Prognosen, um ihre Genauigkeit zu beurteilen und wählen Sie unter den verschiedenen Vorhersage Methoden. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognosemethoden (unter Verwendung von zB Excel) aufzeichnen, wodurch ein visueller Vergleich erleichtert wird. Sie können die vorherigen Prognosen durch Glättungstechniken JavaScript verwenden, um die vergangenen Prognosewerte zu erhalten, die auf Glättungstechniken basieren, die nur einen einzelnen Parameter verwenden. Holt - und Winters-Methoden verwenden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuche und Fehler für die Parameter auszuwählen. Die einzige exponentielle Glättung unterstreicht die kurzfristige Perspektive, die sie auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die eine kleinste Quadrate zu den historischen Daten passt (oder transformierte historische Daten), repräsentiert die lange Reichweite, die auf dem grundlegenden Trend bedingt ist. Holts lineare exponentielle Glättung erfasst Informationen über den letzten Trend. Die Parameter in Holts-Modell sind Pegel-Parameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist und der Trends-Parameter erhöht werden sollte, wenn die aktuelle Trendrichtung durch die kausalen Faktoren unterstützt wird. Kurzfristige Prognose: Beachten Sie, dass jedes JavaScript auf dieser Seite eine einstufige Prognose bietet. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert dem Ende der Zeitreihendaten hinzu und klicken Sie dann auf dieselbe Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Moving durchschnittliche und exponentielle Glättung Modelle Als ein erster Schritt in Bewegung über mittlere Modelle, zufällige Walk-Modelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können Mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann by using a quotsolverquot algorithm to minimize the mean squared error. The optimal value of 945 in the SES model for this series turns out to be 0.2961, as shown here: The average age of the data in this forecast is 10.2961 3.4 periods, which is similar to that of a 6-term simple moving average. The long-term forecasts from the SES model are a horizontal straight line . as in the SMA model and the random walk model without growth. However, note that the confidence intervals computed by Statgraphics now diverge in a reasonable-looking fashion, and that they are substantially narrower than the confidence intervals for the random walk model. The SES model assumes that the series is somewhat quotmore predictablequot than does the random walk model. An SES model is actually a special case of an ARIMA model. so the statistical theory of ARIMA models provides a sound basis for calculating confidence intervals for the SES model. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)

No comments:

Post a Comment